Novasol #### **ABOUT NOVASOL** - Founded in 1998 in Honolulu, Hawaii; mainland office in San Diego - Engineering and technology strengths in ISR & Optical Communications - Agile and strong employee team - more than half with advanced degrees/Ph.D.'s - Employee owned - Strong balance sheet - Strong Congressional support as provider of relevant sustainable technology solutions #### **Awards** - Inc. 500 Recognized Top Performer (Dec 2004) out of 500,000 companies - Winner, Pacific Business News "Best Small Business in Hawaii" (Nov 2005) #### **NOVASOL CAPABILITIES** # Optical Design Instrumentation and Processing Algorithms applied to: - ISR Systems - HSI sensor development - Data fusion and exploitation - Algorithm development - Onboard, real-time - Free-Space Optical Communications - High-bandwidth laser communication - LPI/LPD communications capability - Active tracking & stabilization - System miniaturization - Unmanned Systems and manportable applications **NOVASOL Provides End-to-End Solutions** #### **CUSTOMERS** Empowered by Innovation From Science to Solutions NovaSol offers solutions, technology, and engineering development to DoD and industry HSI systems see many bands of color and spectrally analyze objects while standard cameras see only broad bands of color ### "spectral fingerprint" #### **HYPERSPECTRAL APPLICATIONS** # **Environmental Mapping** Reef characterization Pollution detection/ID Invasive species detection/ID Agriculture characterization Mineral exploration Surveillance Military target detection #### **HSI Systems** - F-18 SHAred Reconnaissance Pod (SHARP) - LOng Range Oblique Photoreconnaissance (LOROP) - Sensors Processors Data Exploitation Software -Integration - Airborne Realtime Cueing Hyperspectral Enhanced Recon (LOROP) - Production for U.S. Civil Air Patrol Search and Rescue - Sensors Processors Data Exploitation Software Integration ### **ARCHER Operator Interface** - Data gathered during test at Hawaii North Shore, 2Q04 - 10 anomalies detected during realtime, coastal scan, five each on land and at sea - High-resolution pan chips provide operator with realtime review of anomaly with fused geolocation data - Images may be transmitted to ground for immediate review The ARCHER user interface was tailored for the operator and the homeland security mission #### **HSI SENSOR MINIATURIZATION** Visible to Near Infrared (VisNIR) 400 – 1100 nanometers Daylight Nadir Spectral Imaging Field tested, multiple units delivered Short Wave Infrared (SWIR) 1 to 2.5 microns Daylight Nadir and Long Range Oblique Spectral Imaging **Currently undergoing test** Long Wave Infrared (LWIR) 8 to 12 microns Day and Night Thermal Spectral Imaging In assembly #### **Fusion Processor Miniaturization** NRL Mercury Fusion Processor 19"W x 23"D x 15"H **Key Enabling Technology: NovaSol Proprietary CkNN Algorithms** **NRL CHAMP Fusion Processor** 19"W x 16"D x 1.75"H **CEROS CASE Processor** 7.9"W x 4.5"H x 11.6"L **COTS FPGA** Hardware # Compact Airborne Signal processing Exploitation module CASE Operator interface display Ground station display #### Tactical Lasercomm at NovaSol - Data transmitted on modulated laser beams - Ultimate in low probability of detection/interception and immunity to jamming - Operates at 1550nm wavelength invisible to silicon-based sensors such as night-vision goggles and image intensifiers - Narrow beam (5' spot @ 5 miles) gives small footprin - Field-tested in a wide variety of configurations with both ends of the link on moving platforms # Field Demonstrations Trident Warrior 06 - Trident Warrior 06 - June 2006 - Transit from San Diego to Honolulu for RIMPAC - Interrogators placed on two ships: - USS Bon Homme Richard (LHD-06) - USS Denver (LPD-09) - Demonstrate: - Fast Ethernet data transmission - Large dataset (movie, audio, etc. files) ship-to-ship transmissions - Trident Warrior 08 - June 2008, San Diego to Honolulu - Retro-mode communications - Application: providing real-time monitoring and data reachback for boarding party teams - Interrogator on ship, retro on boarding party boat - 5 mbps transmission - Video - Biometrics data - Immune to ship's high RF noise levels - Successful - All objectives met ### StandOff MethAmphetamine lab Detection # MWIR and LWIR HSI Standoff Chemical Plume Detections ### SOMAD - DoD and law enforcement need Amphetamine Type Substance (ATS) detection capability - Stand-off detection is required - High spatial and temporal coverage - Covert real-time operation - Multi-platform airborne and man-portable - Comprehensive literature/prior art search performed - ATS production associated with unique chemical effluents - Effluent plumes possess identifiable spectral signatures - Remote sensing technology for CWA and other chemicals potentially applicable ### **SOMAD Approach** #### (I) Detailed Target Signature and Sensor Performance Modeling phase Collection and Reflectance Weather forecast/ sensor specifications libraries radiosonde data MODTRAÑ4 radiative transfer model Radiance libraries for multiple radiance libraries **Target Plume Propagation** Signature Environment Conditioning Radiance and Sensor Phenomenology #### (II) Validation, Anchoring and Demonstration Breadboard Sensor Suite Testing AHI Cryo-LWIR HSI Microbolometer LWIR HSI Prototype MWIR HSI microSWIR HSI Diode laser Gas Sensor (III) Mature Requirements/CONOPS and Validated Performance Modeling Based System Design **NOVASOL PROPRIETARY**